20810547 - ARTIFICIAL INTELLIGENCE FOR SIGNAL PROCESSING

The course introduces the fundamental principles and methods used in artificial intelligence, including the main machine learning and deep learning paradigms, with a specific focus on the approaches aiming to unveil the relevant information hidden in signals collected in real-world applications, such as those associated with electrical and mechanical sensors, audio and speech, images and videos, or biological and medical records, among many others.

scheda docente | materiale didattico

Mutuazione: 20810547 ARTIFICIAL INTELLIGENCE FOR SIGNAL PROCESSING in Ingegneria delle Telecomunicazioni LM-27 MAIORANA EMANUELE

Programma

Introduzione al data analytics
Statistics
inference and statistical hypothesis testing
regression
Machine Learning
classification (supervised learning)
decision trees, random forests, naïve Bayes, linear discriminant analysis, k-nearest neighbor, support vector machines
clustering (unsupervised learning)
k-means clustering
hierarchical clustering
data modeling
principal component analysis, indipendent component analysis, outlier detection and data cleansing, hidden Markov models
deep learning & CNN
Processing
examples in Matlab & Python
Students' presentations


Testi Adottati

S. Nolan and T. Heinzen, "Statistics for the Behavioral Sciences"
G. James, D. Witten, T. Hastie, R. Tibshirani, "An Introduction to Statistical Learning"
K. P. Murphy, "Machine Learning - A Probabilistic Perspective"
S. Theodoridis and K. Koutroumbas, "Pattern Recognition"
T. A. Runkler, "Data Analytics - Models and Algorithms for Intelligent Data Analysis"
I. Goodfellow, Y. Bengio, A. Courville, "Deep Learning"

Materiale didattico ulteriore fornito dal docente


Modalità Erogazione

Lezioni in aula, esercitazioni, presentazioni assegnate

Modalità Frequenza

Frequenza non obbligatoria ma caldamente consigliata

Modalità Valutazione

Discussione orale, presentazione tematica assegnata dal docente